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Abstract 

We developped the direct coating of a 1-mm-thick tungsten-rhenium (W-Re) layer on graphite and C/C 

composite (CFC) by CVD with halide precursors. Conventional process does not allow for operating 

temperatures higher than 1200 °C. We propose a new multi-layers interface (SiC and Re) acting as a 

carbon diffusion barrier, improving the maximum operating temperature. With such coatings, we are 

producing X-ray rotating anodes (50 mm to 150 mm diameters) and we plan to produce 250 mm 

diameter anodes by the end of 2013.  

To obtain crack-free W-Re layers exhibiting high adhesion strength with carbon or CFC materials, even 

under high temperature exposure, growth process mastering is mandatory. Nevertheless its efficiency is 

limited by the base material thermomechanical properties. We show examples of cracks and layer 

delamination occuring on standard CFC grades and how to tune the CFC properties to reduce the 

thermal expansion mismatch. 

We also developed a new method to mount the graphite or carbon composite part directly on the X-ray 

tube rotor stem, allowing its installation on standard X-ray tubes. 
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Introduction 

For X-ray medical application (such as computed tomography “CT scanner”, mamography, 

angiography), there is a continuous tendency towards higher power X-ray beams, allowing better 

accuracy for medical diagnostic. The standard design for X-ray target (rotating anode) is consisting of a 

1-millimeter-thick tungsten/rhenium alloy layer on a disk made of a molybdenum based alloy (Titanium-

Zirconium-Molybdenum alloys, TZM). The molybdenum disk allows efficient heat storage. Nevertheless, 

to maximise heat dissipation, the backside of the target is often brazed to a heat conductive carboneous 

material (fine grain graphite). 
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During operation at high rotating frequency and under high power e-beam excitation, the resulting high 

temperature below the e-beam focal spot, as well as the mechanical loads, has led to the use of another 

anode design. Furthermore higher rotational frequency leads to high mechanical stress on the stator part 

of the housing and produces noise, so lighter materials than tungsten/molybdenum alloys are desired.    

Basically, such “light” anode is made of a graphite substrate rotating at high speed (which allows for heat 

dissipation) on which is directly deposited a 1-mm-thick layer of refractory metal (tungsten-rich W-Re 

alloys), which emits X-rays under e-beam excitation. The course towards higher power for X-ray beams 

has led to a continuous increase of both excitation power and rotating speed. As even the better fine 

grain isostatic graphite shows failure under very high rotating speed and excitation power, the best 

candidate exhibiting higher thermomechanical properties is carbon/carbon (C/C or CFC) composite. 

We developed the direct coating of a thick W-Re layer by mean of CVD with halide precursors, with the 

use of a multilayer interface (SiC and Re) acting as a carbon diffusion barrier and as an adaptive layer 

for strain relaxation. 

Both thicknesses and post-growth thermal treatments have an influence on the layer adhesion strength 

with the graphite or CFC template. For the obtention of crack-free, adhesive tungsten layer, even under 

high temperature exposure, growth process mastering is mandatory but is also limited by the base 

material which should have compatible thermomechanical properties. As a matter of fact, a thermal 

dilatation similar to the one of tungsten is preferable but the base material must also show thermo-

mechanical properties and a thermal conductivity at least better than the one of fine grain isostatic 

graphite. We have also developed a brazing method to mount the graphite or carbon composite part of 

the anode onto the rotor stem. It allows to install our anodes directly on standard X-ray tubes (“plug-and-

play” anodes). 

Overview 

Acerde currently holds four CVD reactors dedicated to SiC and W-Re coatings, as well as 

supplementary  production tools such as high temperature vacuum furnace and fine grinding machine. 

Its equipment allows a capacity of production of 1500 X-ray targets per year, but is also adapted to small 

series and prototype realizations.  

Not only the CVD W-Re deposition step is performed but the whole anode production process (from raw 

graphite substrate to anodes ready for tube mounting) is accomplished. Acerde has thus the capability to 

produce fully ready rotating anodes for X-ray tubes.  

The usual process flow is presented Fig. 1: from customer’s anode design, a graphite body is realized, 

then several inspection controls are performed as well as thermal (outgassing at 2000 °C under 

controled atmosphere) and chemical cleanings (isopropyl alcohol solution in ultrasonic bath). The CVD 

deposition is then performed in one or several steps, depending if SiC is deposited or not. The W-Re 

track layer is finally grinded (Ra rugosity of 0,8 μm), and a mass balancing is done (unbalance less than 

1 g.cm). Finally, the anode is cleaned and outgassed at high temperature (1000-1350 °C under 

secondary vacuum), before to be ready for delivery (after final inspection).  
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Figure 4: Rhenium content measured by EPMA for W-Re thick layers deposited on graphite by CVD.  

Dotted lines indicate the nominal Re content calculated from precursors fluxes ratio. 

 

By an adequate choice of the graphite or C/C composite substrate properties, we are able to deposit 

thick tungsten-rhenium alloys layers (e = 0,5 to 2 mm) on X-ray target body with various design and 

sizes (Fig. 5). CVD allows the deposition of W-Re alloys with well-defined stoichiometry. The deposited 

thicknesses (by varying deposition time and/or deposition rate) may easily be adjusted from 1-micron-

thick layer, up to several millimeters thick coatings. Nevertheless, the deposition of thick layer is limited 

by the low deposition yield at high deposition rate (R > 100 μm.h-1), and the high cost of precursor gases. 

The CVD W-Re coatings have a high volumetric density (similar to the one of bulk material) and 

consequently the thermal conductivity is also high, compared to less dense W-Re coatings obtained by 

physical vapor deposition (PVD) process, such as vacuum plasma spray, or powder metallurgy (cf. Table 

I).  
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After CVD deposition and cooling-down, the density of cracks has been used as a simple criterion to 

evaluate the quality of the coating.  

If no crack is present (or if the crack density is very low, typically less that 1 crack.cm-2), the test samples 

have been annealed, cut, and grinded, in order to produce additional thermal and mechanical stresses. 

 

For W layers deposited on “C/C 2D” grade, we have clearly identified that cracking, due to post-

deposition temperature ramp-down, is very dependent of carbon fiber orientation (Fig. 9). As a matter of 

fact, the thermal dilatation is smaller along the fiber direction than normally to the fiber axis. Thus, we 

observe a cracking network with preferential cracking direction normally to the fiber axis. Similar results 

have been obtained on various C/C 2D composite grades, from various suppliers. 

For “C/C iso” grade, no cracking network is observed even after thermal treatment and polishing (Fig. 

10). It has to be noticed that C/C composite “C/C iso” has very similar mechanical properties to a high 

quality fine grain isostatic graphite.  

 

As a conclusion, W (and low Re content W-Re alloys) without cracking and/or peeling-off are obtained 

when using C/C composite showing quasi isotropic surface (fibers randomly oriented or weaving along a 

high number of directions). An additional criterion to perform W-Re CVD coatings without post-deposition 

crack formation is a CTE as close as possible of W (cf. Table I).  

Brazing of Carboneous Materials for “Plug-and-Play” Anodes 

The “massive” X-ray anodes (tungsten track, TZM and graphite body) are usually mounted on the TZM 

rotor shaft by using Ti-/Zr- braze. The brazing temperature is in the 1550-1750 °C range. For CVD “light” 

anodes such brazing temperature will led to W carbides formation, which has to be avoided to ensure 

the mechanical strength of the target/track layer interface.  

We have developed a brazing process at much more lower temperatures, compatible with the CVD 

process. Typically, it consists in a ring-shaped Mo insert brazed on graphite using Palladium-Cobalt (Pd-

Co) melted at 1200-1250 °C. This temperature allows performing the brazing step after the CVD coating 

steps.   

Using PdCo alloys is a well-known solution for Mo/Mo brazing and ensures the mounting of the graphite 

anode on the TZM rotor shaft. Strengthening between the PdCo alloy and the graphite body is ensured 

mechanically. The Pd-Co brazing could also be done with an additional graphite coating of Ta, TaC, W 

or Re (in particular a W layer could allow the formation of W-C-Co alloys). We also used successfully the 

Pd-Co brazing for C/C targets. 
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Conclusion 

These results allow the production of rotating light anodes with large diameters (Ø = 200 mm, up to 250 

mm) comprising a carboneous body made of a carbon-carbon composite and a W-Re CVD track layer. 

Such rotating anodes with larger diameters, allowing larger thermomechanical loads than conventional 

designs, are on the roadmap for future CT scanners of various manufacturer of X-ray scanners. 
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